Saturday, 22 April 2017

Autoregressive Moving Average Difference

Ein RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel mißt eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander entfernt sind, über die gesamte Reihe korreliert werden. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion der so genannten autoregressiven und gleitenden Durchschnittsparameter zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept dahinter ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die auf den umgekehrten Prozess der Differenzierung zur Erzeugung der Prognose und der MA-Operationen hinweist. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer gleitenden mittleren Komponente erster Ordnung haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter eingeschlossen werden sollen. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Daher ist die traditionelle ARIMA-Modellierung eher eine Kunst als eine Wissenschaft. Autoregressive Moving Average ARMA (p, q) Modelle für die Zeitreihenanalyse - Teil 1 Im letzten Artikel sahen wir zufällige Wanderungen und weißes Rauschen als grundlegende Zeitreihenmodelle für bestimmte Finanzinstrumente wie Tagesaktien und Aktienindexpreise. Wir fanden, dass in einigen Fällen ein zufälliges Wanderungsmodell nicht ausreicht, um das vollständige Autokorrelationsverhalten des Instruments zu erfassen, das anspruchsvollere Modelle motiviert. In den nächsten Artikeln werden wir drei Modelltypen diskutieren, nämlich das Autoregressive (AR) - Modell der Ordnung p, das Moving Average (MA) - Modell der Ordnung q und das gemischte Autogressive Moving Average (ARMA) - Modell der Ordnung p , Q. Diese Modelle werden uns helfen zu erfassen oder zu erklären, mehr der seriellen Korrelation in einem Instrument. Letztlich werden sie uns ein Mittel zur Prognose der künftigen Preise bieten. Es ist jedoch bekannt, dass finanzielle Zeitreihen eine Eigenschaft besitzen, die als Volatilitäts-Clusterung bekannt ist. Das heißt, die Flüchtigkeit des Instruments ist nicht zeitlich konstant. Der technische Begriff für dieses Verhalten wird als bedingte Heteroskedastizität bezeichnet. Da die AR-, MA - und ARMA-Modelle nicht bedingt heteroskedastisch sind, dh sie nicht das Volatilitäts-Clustering berücksichtigen, benötigen wir letztlich ein anspruchsvolleres Modell für unsere Prognosen. Zu diesen Modellen gehören das Autogressive Conditional Heteroskedastic (ARCH) Modell und das Generalized Autogressive Conditional Heteroskedastic (GARCH) Modell und die vielen Varianten davon. GARCH ist in Quantfinance besonders bekannt und wird vor allem für finanzielle Zeitreihensimulationen als Mittel zur Risikoabschätzung eingesetzt. Wie bei allen QuantStart-Artikeln möchte ich aber diese Modelle aus einfacheren Versionen aufbauen, damit wir sehen können, wie jede neue Variante unsere Vorhersagefähigkeit ändert. Trotz der Tatsache, dass AR, MA und ARMA relativ einfache Zeitreihenmodelle sind, sind sie die Grundlage für kompliziertere Modelle wie den Autoregressive Integrated Moving Average (ARIMA) und die GARCH-Familie. Daher ist es wichtig, dass wir sie studieren. Einer unserer ersten Trading-Strategien in der Zeitreihe Artikel-Serie wird es sein, ARIMA und GARCH zu kombinieren, um die Preise n Perioden im Voraus vorherzusagen. Allerdings müssen wir warten, bis weve diskutiert sowohl ARIMA und GARCH separat, bevor wir sie auf eine echte Strategie anwenden Wir werden in diesem Artikel werden wir einige neue Zeitreihen-Konzepte, die gut für die restlichen Methoden, nämlich streng zu skizzieren Stationarität und dem Akaike-Informationskriterium (AIC). Im Anschluss an diese neuen Konzepte werden wir dem traditionellen Muster für das Studium neuer Zeitreihenmodelle folgen: Begründung - Die erste Aufgabe ist es, einen Grund dafür zu liefern, warum sich ein bestimmtes Modell als Quants interessierte. Warum stellen wir das Zeitreihenmodell vor Welche Auswirkungen kann es erfassen Was gewinnen wir (oder verlieren), indem wir zusätzliche Komplexität hinzufügen Definition - Wir müssen die vollständige mathematische Definition (und damit verbundene Notation) des Zeitreihenmodells zur Minimierung bereitstellen Jede Unklarheit. Eigenschaften der zweiten Ordnung - Wir diskutieren (und in einigen Fällen) die Eigenschaften zweiter Ordnung des Zeitreihenmodells, das sein Mittel, seine Varianz und seine Autokorrelationsfunktion enthält. Correlogram - Wir verwenden die Eigenschaften zweiter Ordnung, um ein Korrektramm einer Realisierung des Zeitreihenmodells zu zeichnen, um sein Verhalten zu visualisieren. Simulation - Wir simulieren Realisierungen des Zeitreihenmodells und passen dann das Modell an diese Simulationen an, um sicherzustellen, dass wir genaue Implementierungen haben und den Anpassungsprozess verstehen. Echte Finanzdaten - Wir passen das Zeitreihenmodell auf echte Finanzdaten an und betrachten das Korrektramm der Residuen, um zu sehen, wie das Modell die serielle Korrelation in der ursprünglichen Serie berücksichtigt. Vorhersage - Wir erstellen n-Schritt-Voraus-Prognosen des Zeitreihenmodells für besondere Realisierungen, um letztendlich Handelssignale zu erzeugen. Fast alle Artikel, die ich auf Zeitreihenmodellen schreibe, werden in dieses Muster fallen und es wird uns erlauben, die Unterschiede zwischen jedem Modell leicht zu vergleichen, da wir weitere Komplexität hinzufügen. Wurden zu Beginn mit Blick auf strenge Stationarität und die AIC. Strengst stationär Wir haben die Definition der Stationarität in dem Artikel über die serielle Korrelation. Da wir jedoch in den Bereich vieler Finanzserien mit verschiedenen Frequenzen treten, müssen wir sicherstellen, dass unsere (eventuellen) Modelle die zeitlich variierende Volatilität dieser Serien berücksichtigen. Insbesondere müssen wir ihre Heteroskedastizität berücksichtigen. Wir werden auf dieses Problem stoßen, wenn wir versuchen, bestimmte Modelle zu historischen Serien zu passen. Grundsätzlich können nicht alle seriellen Korrelationen in den Resten von eingebauten Modellen berücksichtigt werden, ohne Heteroskedastizität zu berücksichtigen. Das bringt uns zurück zur Stationarität. Eine Serie ist nicht stationär in der Varianz, wenn sie zeitvariable Volatilität hat, per Definition. Dies motiviert eine rigorosere Definition der Stationarität, nämlich eine strenge Stationarität: Strengst stationäre Serie Ein Zeitreihenmodell ist streng stationär, wenn die gemeinsame statistische Verteilung der Elemente x, ldots, x die gleiche ist wie die von xm, ldots, xm, Für alle ti, m. Man kann an diese Definition nur denken, daß die Verteilung der Zeitreihen für jede zeitliche Verschiebung unverändert bleibt. Insbesondere sind das Mittel und die Varianz rechtzeitig für eine streng stationäre Folge konstant und die Autokovarianz zwischen xt und xs (nur) hängt nur von der absoluten Differenz von t und s, t-s ab. In zukünftigen Beiträgen werden wir streng stationäre Serien besprechen. Akaike Information Criterion Ich erwähnte in früheren Artikeln, dass wir schließlich zu prüfen, wie die Wahl zwischen getrennten besten Modelle. Dies gilt nicht nur für die Zeitreihenanalyse, sondern auch für das maschinelle Lernen und generell für die Statistik im Allgemeinen. Die beiden Hauptmethoden (vorläufig) sind das Akaike Information Criterion (AIC) und das Bayesian Information Criterion (wie wir mit unseren Artikeln über Bayesian Statistics weiter vorankommen). Nun kurz die AIC, wie es in Teil 2 des ARMA Artikel verwendet werden. AIC ist im Wesentlichen ein Hilfsmittel zur Modellauswahl. Das heißt, wenn wir eine Auswahl von statistischen Modellen (einschließlich Zeitreihen) haben, dann schätzt die AIC die Qualität jedes Modells, relativ zu den anderen, die wir zur Verfügung haben. Es basiert auf Informationstheorie. Das ist ein sehr interessantes, tiefes Thema, das wir leider nicht in zu viel Detail gehen können. Es versucht, die Komplexität des Modells, die in diesem Fall bedeutet die Anzahl der Parameter, wie gut es passt die Daten. Lets eine Definition: Akaike Information Criterion Wenn wir die Likelihood-Funktion für ein statistisches Modell, das k Parameter hat, und L maximiert die Wahrscheinlichkeit. Dann ist das Akaike Information Criterion gegeben durch: Das bevorzugte Modell, aus einer Auswahl von Modellen, hat die minium AIC der Gruppe. Sie können sehen, dass die AIC wächst mit der Anzahl der Parameter, k, erhöht, aber reduziert wird, wenn die negative Log-Likelihood erhöht. Im Wesentlichen bestraft sie Modelle, die übermäßig sind. Wir werden AR, MA und ARMA Modelle von unterschiedlichen Aufträgen erstellen und eine Möglichkeit, das beste Modell zu wählen, das zu einem bestimmten Datensatz passt, ist, die AIC zu verwenden. Dies ist, was gut tun, im nächsten Artikel, vor allem für ARMA Modelle. Autoregressive (AR) Modelle der Ordnung p Das erste Modell, das die Grundlage von Teil 1 bildet, ist das autoregressive Modell der Ordnung p, oft verkürzt zu AR (p). Im vorherigen Artikel betrachteten wir den zufälligen Weg. Wobei jeder Term xt nur von dem vorherigen Term x und einem stochastischen weißen Rauschterm abhängt, wt: Das autoregressive Modell ist einfach eine Erweiterung des zufälligen Weges, der Terme weiter zurück in der Zeit enthält. Die Struktur des Modells ist linear. Das heißt, das Modell hängt linear von den vorherigen Bedingungen ab, wobei für jeden Term Koeffizienten vorliegen. Dies ist, wo die regressive kommt aus der autoregressive. Es ist im Wesentlichen ein Regressionsmodell, bei dem die vorherigen Begriffe die Prädiktoren sind. Autoregressives Modell der Ordnung p Ein Zeitreihenmodell ist ein autoregressives Modell der Ordnung p. AR (p), wenn: begin xt alpha1 x ldots alphap x wt sum p alpha x wt end Wo ist weißes Rauschen und alpha in mathbb, mit alphap neq 0 für einen autoregressiven p-order Prozess. Wenn wir den Backward Shift Operator betrachten. (Siehe vorheriger Artikel), dann können wir das obige als eine Funktion theta folgendermaßen umschreiben: begin thetap () xt (1 - alpha1 - alpha2 2 - ldots - alphap) xt wt Ende Vielleicht das erste, was über das AR (p) Ist, dass ein zufälliger Weg einfach AR (1) mit alpha1 gleich Eins ist. Wie oben erwähnt, ist das autogressive Modell eine Erweiterung des zufälligen Weges, so dass dies sinnvoll ist. Es ist einfach, Vorhersagen mit dem AR (p) - Modell zu jeder Zeit t vorzunehmen, sobald wir die alphai-Koeffizienten, unsere Schätzung, bestimmt haben Wird einfach: anfangen Hut t alpha1 x ldots alphap x end So können wir n-Schritt voraus Prognosen durch die Herstellung Hut t, Hut, Hut, etc. bis zu Hut. Tatsächlich werden wir, wenn wir die ARMA-Modelle in Teil 2 betrachten, die R-Vorhersagefunktion verwenden, um Prognosen (zusammen mit Standardfehler-Konfidenzintervallbändern) zu erzeugen, die uns helfen, Handelssignale zu erzeugen. Stationarität für autoregressive Prozesse Eines der wichtigsten Aspekte des AR (p) - Modells ist, dass es nicht immer stationär ist. Tatsächlich hängt die Stationarität eines bestimmten Modells von den Parametern ab. Ive berührte dieses vorher in einem vorhergehenden Artikel. Um zu bestimmen, ob ein AR (p) - Prozeß stationär ist oder nicht, müssen wir die charakteristische Gleichung lösen. Die charakteristische Gleichung ist einfach das autoregressive Modell, geschrieben in Rückwärtsverschiebung Form, auf Null gesetzt: Wir lösen diese Gleichung für. Damit das bestimmte autoregressive Verfahren stationär ist, brauchen wir alle Absolutwerte der Wurzeln dieser Gleichung, um Eins zu übersteigen. Dies ist eine äußerst nützliche Eigenschaft und ermöglicht es uns, schnell zu berechnen, ob ein AR (p) - Prozeß stationär ist oder nicht. Wir betrachten einige Beispiele, um diese Idee konkret zu machen: Random Walk - Der AR (1) Prozess mit alpha1 1 hat die charakteristische Gleichung theta 1 -. Offensichtlich hat diese Wurzel 1 und als solche ist nicht stationär. AR (1) - Wenn wir alpha1 frac wählen, erhalten wir xt frac x wt. Dies ergibt eine charakteristische Gleichung von 1 - frac 0, die eine Wurzel von 4 gt 1 hat und somit dieses AR (1) - Verfahren stationär ist. AR (2) - Wenn wir alpha1 alpha2 frac setzen, erhalten wir xt frac x frac x wt. Seine charakteristische Gleichung wird - frac () () 0, die zwei Wurzeln von 1, -2 ergibt. Da es sich um eine Einheitswurzel handelt, handelt es sich um eine nichtstationäre Serie. Andere AR (2) - Serien können jedoch stationär sein. Eigenschaften der zweiten Ordnung Der Mittelwert eines AR (p) - Prozesses ist Null. Allerdings sind die Autokovarianzen und Autokorrelationen durch rekursive Funktionen, bekannt als die Yule-Walker-Gleichungen gegeben. Die vollständigen Eigenschaften sind unten angegeben: begin mux E (xt) 0 end begin gammak sum p alpha gamma, enspace k 0 end begin rhok sum p alphai rho, enspace k 0 end Beachten Sie, dass es notwendig ist, die alpha-Parameterwerte vor zu kennen Berechnen der Autokorrelationen. Nachdem wir die Eigenschaften zweiter Ordnung angegeben haben, können wir verschiedene Ordnungen von AR (p) simulieren und die entsprechenden Korrektramme darstellen. Simulationen und Correlogramme Beginnen wir mit einem AR (1) - Prozess. Dies ist ähnlich einem zufälligen Weg, außer dass alpha1 nicht gleich Eins haben muss. Unser Modell wird alpha1 0,6 haben. Der R-Code für die Erzeugung dieser Simulation ist wie folgt gegeben: Beachten Sie, dass unsere for-Schleife von 2 bis 100, nicht 1 bis 100, als xt-1 ausgeführt wird, wenn t0 nicht indexierbar ist. Ähnlich für AR (p) Prozesse höherer Ordnung muss t in dieser Schleife von p bis 100 reichen. Wir können die Realisierung dieses Modells und seines zugehörigen Korrelogramms mit Hilfe der Layout-Funktion darstellen: Lasst uns jetzt versuchen, einen AR (p) - Prozeß an die soeben erzeugten simulierten Daten anzupassen, um zu sehen, ob wir die zugrunde liegenden Parameter wiederherstellen können. Sie können daran erinnern, dass wir ein ähnliches Verfahren in dem Artikel über weiße Rauschen und zufällige Wanderungen durchgeführt. Wie sich herausstellt, bietet R einen nützlichen Befehl ar, um autoregressive Modelle zu passen. Wir können diese Methode verwenden, um uns zuerst die beste Ordnung p des Modells zu erzählen (wie durch die AIC oben bestimmt) und liefern uns mit Parameterschätzungen für das alphai, die wir dann verwenden können, um Konfidenzintervalle zu bilden. Für die Vollständigkeit können wir die x-Reihe neu erstellen: Jetzt verwenden wir den ar-Befehl, um ein autoregressives Modell an unseren simulierten AR (1) - Prozess anzupassen, wobei die maximale Wahrscheinlichkeitsschätzung (MLE) als Anpassungsverfahren verwendet wird. Wir werden zunächst die beste erhaltene Ordnung extrahieren: Der ar Befehl hat erfolgreich festgestellt, dass unser zugrunde liegendes Zeitreihenmodell ein AR (1) Prozess ist. Wir erhalten dann die Alpha-Parameter (s) Schätzungen: Die MLE-Prozedur hat eine Schätzung erzeugt, Hut 0,523, die etwas niedriger als der wahre Wert von alpha1 0,6 ist. Schließlich können wir den Standardfehler (mit der asymptotischen Varianz) verwenden, um 95 Konfidenzintervalle um den / die zugrunde liegenden Parameter zu konstruieren. Um dies zu erreichen, erstellen wir einfach einen Vektor c (-1.96, 1.96) und multiplizieren ihn dann mit dem Standardfehler: Der wahre Parameter fällt in das 95 Konfidenzintervall, da wir von der Tatsache erwarten, dass wir die Realisierung aus dem Modell spezifisch generiert haben . Wie wäre es, wenn wir die alpha1 -0.6 ändern, können wir wie folgt ein AR (p) - Modell mit ar: Wiederherstellen wir die richtige Reihenfolge des Modells, mit einer sehr guten Schätzung Hut -0.597 von alpha1-0.6. Wir sehen auch, dass der wahre Parameter wieder innerhalb des Konfidenzintervalls liegt. Fügen wir mehr Komplexität zu unseren autoregressiven Prozessen hinzu, indem wir ein Modell der Ordnung 2 simulieren. Insbesondere setzen wir alpha10.666, setzen aber auch alpha2 -0.333. Heres den vollständigen Code, um die Realisierung zu simulieren und zu plotten, sowie das Korrelogram für eine solche Serie: Wie zuvor sehen wir, dass sich das Korrelogramm signifikant von dem des weißen Rauschens unterscheidet, wie man es erwarten kann. Es gibt statistisch signifikante Peaks bei k1, k3 und k4. Wieder einmal wollten wir den ar-Befehl verwenden, um ein AR (p) - Modell zu unserer zugrundeliegenden AR (2) Realisierung zu passen. Die Prozedur ist ähnlich wie bei der AR (1) - Sitzung: Die korrekte Reihenfolge wurde wiederhergestellt und die Parameterschätzungen Hut 0.696 und Hut -0.395 sind nicht zu weit weg von den wahren Parameterwerten von alpha10.666 und alpha2-0.333. Beachten Sie, dass wir eine Konvergenz-Warnmeldung erhalten. Beachten Sie auch, dass R tatsächlich die arima0-Funktion verwendet, um das AR-Modell zu berechnen. AR (p) - Modelle sind ARIMA (p, 0, 0) - Modelle und somit ein AR-Modell ein Spezialfall von ARIMA ohne Moving Average (MA) - Komponente. Nun auch mit dem Befehl arima, um Konfidenzintervalle um mehrere Parameter zu erstellen, weshalb wir vernachlässigt haben, es hier zu tun. Nachdem wir nun einige simulierte Daten erstellt haben, ist es an der Zeit, die AR (p) - Modelle auf finanzielle Asset-Zeitreihen anzuwenden. Financial Data Amazon Inc. Lets beginnen mit dem Erwerb der Aktienkurs für Amazon (AMZN) mit quantmod wie im letzten Artikel: Die erste Aufgabe ist es, immer den Preis für eine kurze visuelle Inspektion. In diesem Fall auch die täglichen Schlusskurse: Youll bemerken, dass quantmod einige Formatierungen für uns, nämlich das Datum, und ein etwas hübscheres Diagramm als die üblichen R-Diagramme hinzufügt: Wir werden jetzt die logarithmische Rückkehr von AMZN und dann die erste nehmen Um die ursprüngliche Preisreihe von einer nichtstationären Serie auf eine (potentiell) stationäre zu konvertieren. Dies ermöglicht es uns, Äpfel mit Äpfeln zwischen Aktien, Indizes oder anderen Vermögenswerten zu vergleichen, für die Verwendung in späteren multivariaten Statistiken, wie bei der Berechnung einer Kovarianzmatrix. Wenn Sie eine ausführliche Erklärung, warum Protokoll Rückkehr bevorzugen möchten, werfen Sie einen Blick auf diesen Artikel über bei Quantivity. Erstellt eine neue Serie, amznrt. Um unsere differenzierten Logarithmen zurückzuhalten: Wieder einmal können wir die Serie darstellen: In diesem Stadium wollen wir das Korrektramm zeichnen. Sie suchten, um zu sehen, ob die differenzierte Reihe wie weißes Rauschen aussieht. Wenn es nicht dann gibt es unerklärliche serielle Korrelation, die durch ein autoregressives Modell erklärt werden könnte. Wir bemerken einen statistisch signifikanten Peak bei k2. Daher gibt es eine vernünftige Möglichkeit der unerklärlichen seriellen Korrelation. Seien Sie sich jedoch bewusst, dass dies aufgrund der Stichprobe. Als solches können wir versuchen, ein AR (p) - Modell an die Serie anzubringen und Konfidenzintervalle für die Parameter zu erzeugen: Die Anpassung des ar-autoregressiven Modells an die erste Reihe differenzierte Serien von Logarithmen erzeugt ein AR (2) - Modell mit Hut -0,0278 Und hat -0.0687. Ive auch die aysmptotische Varianz, so dass wir berechnen können Standard-Fehler für die Parameter und erzeugen Vertrauen Intervalle. Wir wollen sehen, ob null Teil des 95-Konfidenzintervalls ist, als ob es ist, es reduziert unser Vertrauen, dass wir ein echtes zugrunde liegendes AR (2) - Verfahren für die AMZN-Serie haben. Um die Konfidenzintervalle auf der 95-Ebene für jeden Parameter zu berechnen, verwenden wir die folgenden Befehle. Wir nehmen die Quadratwurzel des ersten Elements der asymptotischen Varianzmatrix auf, um einen Standardfehler zu erzeugen, dann erzeugen Sie Konfidenzintervalle, indem wir sie mit -1,96 bzw. 1,96 für die 95-Ebene multiplizieren: Beachten Sie, dass dies bei Verwendung der Arima-Funktion einfacher wird , Aber gut bis Teil 2 warten, bevor es richtig eingeführt. Somit können wir sehen, dass für alpha1 Null innerhalb des Konfidenzintervalls enthalten ist, während für alpha2 Null nicht im Konfidenzintervall enthalten ist. Daher sollten wir sehr vorsichtig sein, wenn wir denken, dass wir tatsächlich ein zugrundeliegendes generatives AR (2) - Modell für AMZN haben. Insbesondere berücksichtigen wir, dass das autoregressive Modell nicht das Volatilitäts-Clustering berücksichtigt, was zu einer Clusterbildung der seriellen Korrelation in finanziellen Zeitreihen führt. Wenn wir die ARCH - und GARCH-Modelle in späteren Artikeln betrachten, werden wir dies berücksichtigen. Wenn wir kommen, um die volle Arima-Funktion in den nächsten Artikel verwenden, werden wir Vorhersagen der täglichen Log-Preis-Serie, um uns zu ermöglichen, Trading-Signale zu schaffen. SampP500 US Equity Index Zusammen mit einzelnen Aktien können wir auch den US Equity Index, den SampP500, berücksichtigen. Lets alle vorherigen Befehle zu dieser Serie und produzieren die Plots wie zuvor: Wir können die Preise: Wie vor, erstellen Sie auch die erste Ordnung Differenz der Log-Schlusskurse: Wieder einmal können wir die Serie plotten: Es ist klar Aus dieser Grafik, dass die Volatilität nicht in der Zeit stationär ist. Dies spiegelt sich auch in der Darstellung des Korrelogramms wider. Es gibt viele Peaks, einschließlich k1 und k2, die statistisch signifikant über ein weißes Rauschmodell hinausgehen. Darüber hinaus sehen wir Hinweise auf Langzeitgedächtnisprozesse, da es einige statistisch signifikante Peaks bei k16, k18 und k21 gibt: Letztlich benötigen wir ein komplexeres Modell als ein autoregressives Modell der Ordnung p. Allerdings können wir in diesem Stadium noch versuchen, ein solches Modell anzupassen. Wir sehen, was wir bekommen, wenn wir dies tun: Mit ar erzeugt ein AR (22) - Modell, dh ein Modell mit 22 Nicht-Null-Parametern Was bedeutet dies sagen uns Es ist bezeichnend, dass es wahrscheinlich viel mehr Komplexität in der seriellen Korrelation als Ein einfaches lineares Modell der vergangenen Preise kann wirklich erklären. Jedoch wussten wir dies bereits, weil wir sehen können, dass es eine signifikante serielle Korrelation in der Volatilität gibt. Betrachten wir zum Beispiel die sehr volatile Periode um 2008. Dies motiviert den nächsten Satz von Modellen, nämlich den Moving Average MA (q) und den autoregressiven Moving Average ARMA (p, q). Nun lernen Sie über diese beiden in Teil 2 dieses Artikels. Wie wir immer wieder erwähnen, werden diese letztlich zu der ARIMA - und GARCH-Modellfamilie führen, die beide eine viel bessere Anpassung an die serielle Korrelationskomplexität des Samp500 bieten. Dadurch können wir unsere Prognosen signifikant verbessern und letztendlich rentabler gestalten. Klicken Sie unten, um mehr darüber zu erfahren. Die Informationen auf dieser Website ist die Meinung der einzelnen Autoren auf der Grundlage ihrer persönlichen Beobachtung, Forschung und jahrelange Erfahrung. Der Herausgeber und seine Autoren sind nicht registrierte Anlageberater, Rechtsanwälte, CPAs oder andere Finanzdienstleister und machen keine Rechts-, Steuer-, Rechnungswesen, Anlageberatung oder andere professionelle Dienstleistungen. Die Informationen, die von dieser Web site angeboten werden, sind nur allgemeine Ausbildung. Weil jeder Einzelne sachliche Situation anders ist, sollte der Leser seinen persönlichen Berater suchen. Weder der Autor noch die Herausgeber übernimmt keine Haftung oder Verantwortung für Fehler oder Auslassungen und haftet weder noch Verantwortung für jede Person oder Organisation in Bezug auf Schäden verursacht oder angeblich müssen direkt oder indirekt von der auf dieser Seite enthaltenen Informationen verursacht werden. Benutzung auf eigene Gefahr. Darüber hinaus kann diese Website erhalten finanzielle Entschädigung von den Unternehmen erwähnt durch Werbung, Affiliate-Programme oder auf andere Weise. Preise und Angebote von Inserenten auf dieser Website ändern sich häufig, manchmal ohne Vorankündigung. Während wir uns bemühen, rechtzeitige und genaue Informationen aufrechtzuerhalten, können Angebot Details veraltet sein. Besucher sollten daher die Bedingungen dieser Angebote vor der Teilnahme an ihnen überprüfen. Der Autor und sein Herausgeber haften nicht für die Aktualisierung von Informationen und haften nicht für Inhalte, Produkte und Dienstleistungen von Drittanbietern, auch wenn auf Hyperlinks und / oder Werbung auf dieser Website zugegriffen wird. Autoregressive Moving Average Fehlerprozesse 13 13 13 13 13 13 Autoregressiver gleitender Durchschnitt Fehlerprozesse (ARMA-Fehler) und andere Modelle mit Verzögerungen von Fehlertermen können unter Verwendung von FIT-Anweisungen geschätzt und mit SOLVE-Anweisungen simuliert oder prognostiziert werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Sie Modelle mit gleitenden mittleren Fehlerprozessen angeben. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen Erwartungswert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist: Sie würden dieses Modell wie folgt schreiben: oder äquivalent das AR-Makro als Moving Average Models 13A verwenden Modell mit mittleren Durchschnittsfehlern erster Ordnung, MA (1), hat die Form, in der identisch und unabhängig verteilt mit Mittelwert Null ist. Ein MA (2) - Fehlerprozeß hat die Form und so weiter für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Durchschnittsparameter sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL als Hinweis definiert wird, dass RESID. Y ist. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen abzuschneiden. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und keine fehlenden Werte propagieren, wenn Lag-Priming-Periodenvariablen fehlen und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Verzögerungsfunktionen finden Sie im Abschnitt 34Lag Logic.34 Dieses mit dem MA-Makro geschriebene Modell ist Generalform für ARMA-Modelle. Der allgemeine ARMA-Prozess (p, q) hat die folgende Form Ein ARMA-Modell (p, q) kann sein Wie folgt angegeben, wobei AR i und MA j die autoregressiven und sich bewegenden Durchschnittsparameter für die verschiedenen Verzögerungen darstellen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozess für die Fehler der beiden endogenen Variablen Y1 und Y2 folgendermaßen spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von .001 für ARMA-Parameter arbeiten in der Regel, wenn das Modell die Daten gut passt und das Problem ist gut konditioniert. Man beachte, dass ein MA-Modell oft durch ein AR-Modell höherer Ordnung angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität bei gemischten ARMA-Modellen führen, was wiederum zu ernsthaften Konditionierungen in den Berechnungen und der Instabilität der Parameterschätzungen führen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zuerst eine FIT-Anweisung, um nur die strukturellen Parameter mit den auf Null gehaltenen ARMA-Parametern zu schätzen (oder zu vernünftigen vorherigen Schätzungen, falls verfügbar). Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur unter Verwendung der strukturellen Parameterwerte aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzwerten liegen, können nun die ARMA-Parameterschätzwerte konvergieren. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun sehr nahe an ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell zusammenlaufen, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen 13 13 13 13 13 13 13 13 13 13 13 13 Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die von den SAS / ETS-Prozeduren unterstützten autoregressiven Fehlerstartverfahren sind die folgenden: CLS bedingte kleinste Fehlerquadrate (ARIMA - und MODEL-Prozeduren) ULS unbedingte kleinste Fehlerquadrate (AUTOREG-, ARIMA - und MODEL-Prozeduren) ML maximale Wahrscheinlichkeit (AUTOREG-, ARIMA - und MODEL - YW Yule-Walker (nur AUTOREG-Prozedur) HL Hildreth-Lu, der die ersten p-Beobachtungen löscht (nur MODELL-Verfahren) Siehe Kapitel 8. für eine Erklärung und Diskussion der Vorzüge verschiedener AR (p) - Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Bei AR (1) Fehlern können diese Initialisierungen wie in Tabelle 14.2 dargestellt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 14.2: Initialisierungen durch PROC MODELL: AR (1) ERRORS MA Anfangsbedingungen 13 13 13 13 13 13 Die Anfangsverzögerungen der Fehlerterme der MA (q) - Modelle können auch auf unterschiedliche Weise modelliert werden. Die folgenden gleitenden durchschnittlichen Fehlerstartparadigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: ULS unconditional least squares CLS bedingte kleinste Quadrate ML Maximum-Likelihood Die bedingte Methode der kleinsten Fehlerquadrate zur Schätzung der gleitenden durchschnittlichen Fehlerterme ist nicht optimal, da sie das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Kleinste-Quadrate-Residuen für die gleitende mittlere Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Sie sollten eine AR (p) - Näherung für den gleitenden Durchschnittsprozess in Betracht ziehen. Ein gleitender Durchschnittsprozess kann üblicherweise durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert wurden. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SAS / ETS-Software und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für univariate Autoregression uneingeschränkte Vektorautoregression eingeschränkte Vektorautoregression verwendet werden. Univariate Autoregression 13 Um die Fehlerbedingung einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine lineare Funktion von X1 und X2 und ein AR (2) - Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der aufrufende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 14.49 gezeigten Aussagen. Abbildung 14.50: LIST-Optionenausgabe für ein AR-Modell mit Lags bei 1, 12 und 13 Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie verwendet werden, um den AR-Prozess zu aktivieren. Die AR-bedingte Kleinste-Quadrate-Methode verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die anfänglichen Verzögerungen autoregressiver Terme an. Wenn Sie die Option M verwenden, können Sie anfordern, dass AR die unconditional least-squares (ULS) oder Maximum-Likelihood (ML) - Methode verwendet. Zum Beispiel: Die Diskussion dieser Methoden ist in den 34AR Anfangsbedingungen34 früher in diesem Abschnitt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie zum Beispiel die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 14.51 dargestellte Ausgabe. Die MODEL-Prozedurauflistung der kompilierten Programmcodeaussage als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y) yl2 ZLAG2 (y ) Yl3 ZLAG3 (y) yl4 ZLAG4 (y) yl5 ZLAG5 (y) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Abbildung 14.51: LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y Als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression 13 Um die Fehlerterme eines Gleichungssatzes als vektorautoregressiven Prozess zu modellieren, verwenden Sie nach den Gleichungen die folgende Form des AR-Makros: Der Name des Prozessnamens ist ein beliebiger Name, den Sie für AR verwenden, um Namen für das zu verwenden Autoregressive Parameter. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber diese wird durch die Länge des Namens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 Folgendes generieren: Für Vektorprozesse kann nur die Methode der bedingten Kleinste-Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Beispielsweise wenden die Anweisungen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler an, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind. You can model the three series Y1-Y3 as a vector autoregressive process in the variables instead of in the errors by using the TYPEV option. If you want to model Y1-Y3 as a function of past values of Y1-Y3 and some exogenous variables or constants, you can use AR to generate the statements for the lag terms. Write an equation for each variable for the nonautoregressive part of the model, and then call AR with the TYPEV option. For example, The nonautoregressive part of the model can be a function of exogenous variables, or it may be intercept parameters. If there are no exogenous components to the vector autoregression model, including no intercepts, then assign zero to each of the variables. There must be an assignment to each of the variables before AR is called. This example models the vector Y(Y1 Y2 Y3) as a linear function only of its value in the previous two periods and a white noise error vector. The model has 18(3 times 3 3 times 3) parameters. Syntax of the AR Macro There are two cases of the syntax of the AR macro. The first has the general form name specifies a prefix for AR to use in constructing names of variables needed to define the AR process. If the endolist is not specified, the endogenous list defaults to name . which must be the name of the equation to which the AR error process is to be applied. The name value cannot exceed eight characters. nlag is the order of the AR process. endolist specifies the list of equations to which the AR process is to be applied. If more than one name is given, an unrestricted vector process is created with the structural residuals of all the equations included as regressors in each of the equations. If not specified, endolist defaults to name . laglist specifies the list of lags at which the AR terms are to be added. The coefficients of the terms at lags not listed are set to 0. All of the listed lags must be less than or equal to nlag . and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag . M method specifies the estimation method to implement. Valid values of M are CLS (conditional least-squares estimates), ULS (unconditional least-squares estimates), and ML (maximum-likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified. The ULS and ML methods are not supported for vector AR models by AR. TYPEV specifies that the AR process is to be applied to the endogenous variables themselves instead of to the structural residuals of the equations. Restricted Vector Autoregression 13 13 13 13 You can control which parameters are included in the process, restricting those parameters that you do not include to 0. First, use AR with the DEFER option to declare the variable list and define the dimension of the process. Then, use additional AR calls to generate terms for selected equations with selected variables at selected lags. For example, The error equations produced are This model states that the errors for Y1 depend on the errors of both Y1 and Y2 (but not Y3) at both lags 1 and 2, and that the errors for Y2 and Y3 depend on the previous errors for all three variables, but only at lag 1. AR Macro Syntax for Restricted Vector AR An alternative use of AR is allowed to impose restrictions on a vector AR process by calling AR several times to specify different AR terms and lags for different equations. The first call has the general form name specifies a prefix for AR to use in constructing names of variables needed to define the vector AR process. nlag specifies the order of the AR process. endolist specifies the list of equations to which the AR process is to be applied. DEFER specifies that AR is not to generate the AR process but is to wait for further information specified in later AR calls for the same name value. The subsequent calls have the general form name is the same as in the first call. eqlist specifies the list of equations to which the specifications in this AR call are to be applied. Only names specified in the endolist value of the first call for the name value can appear in the list of equations in eqlist . varlist specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . Only names in the endolist of the first call for the name value can appear in varlist . If not specified, varlist defaults to endolist . laglist specifies the list of lags at which the AR terms are to be added. The coefficients of the terms at lags not listed are set to 0. All of the listed lags must be less than or equal to the value of nlag . and there must be no duplicates. If not specified, laglist defaults to all lags 1 through nlag . The MA Macro 13 The SAS macro MA generates programming statements for PROC MODEL for moving average models. The MA macro is part of SAS/ETS software and no special options are needed to use the macro. The moving average error process can be applied to the structural equation errors. The syntax of the MA macro is the same as the AR macro except there is no TYPE argument. 13 When you are using the MA and AR macros combined, the MA macro must follow the AR macro. The following SAS/IML statements produce an ARMA(1, (1 3)) error process and save it in the data set MADAT2. The following PROC MODEL statements are used to estimate the parameters of this model using maximum likelihood error structure: The estimates of the parameters produced by this run are shown in Figure 14.52. Maximum Likelihood ARMA(1, (1 3)) Figure 14.52: Estimates from an ARMA(1, (1 3)) Process Syntax of the MA Macro There are two cases of the syntax for the MA macro. The first has the general form name specifies a prefix for MA to use in constructing names of variables needed to define the MA process and is the default endolist . nlag is the order of the MA process. endolist specifies the equations to which the MA process is to be applied. If more than one name is given, CLS estimation is used for the vector process. laglist specifies the lags at which the MA terms are to be added. All of the listed lags must be less than or equal to nlag . and there must be no duplicates. If not specified, the laglist defaults to all lags 1 through nlag . M method specifies the estimation method to implement. Valid values of M are CLS (conditional least-squares estimates), ULS (unconditional least-squares estimates), and ML (maximum-likelihood estimates). MCLS is the default. Only MCLS is allowed when more than one equation is specified on the endolist . MA Macro Syntax for Restricted Vector Moving Average 13 An alternative use of MA is allowed to impose restrictions on a vector MA process by calling MA several times to specify different MA terms and lags for different equations. The first call has the general form name specifies a prefix for MA to use in constructing names of variables needed to define the vector MA process. nlag specifies the order of the MA process. endolist specifies the list of equations to which the MA process is to be applied. DEFER specifies that MA is not to generate the MA process but is to wait for further information specified in later MA calls for the same name value. The subsequent calls have the general form name is the same as in the first call. eqlist specifies the list of equations to which the specifications in this MA call are to be applied. varlist specifies the list of equations whose lagged structural residuals are to be included as regressors in the equations in eqlist . laglist specifies the list of lags at which the MA terms are to be added.


No comments:

Post a Comment